

Phantom

Mobile Communication Network Architecture (MCNA) Overview for ICNS 2005

Co-Funded by FAA and NASA GRC under the Boeing Global Communication, Navigation and Surveillance System (GCNSS) Follow-on Contract

Boeing team includes: Boeing, Avaliant, Honeywell & ITT

David C. Morse, Avaliant James M. Budinger, NASA GRC

MCNA Introduction

Boeing Technology | Phantom Works

- Mobile Communication Network Architecture (MCNA) represents the aggregate of all digital voice and data communications for CNS/ATM
- Specifically focused on communication support for Network Centric Operations
- System of System Engineering (SoSE) approach
- Results will provide a technology development roadmap to help guide future NASA GRC R&D efforts
- Contract focused on covering breadth vs. depth during this phase

MCNA SoSE Approach

Boeing Technology | Phantom Works

MCNA Relationship with Past, Present & Future NASA Research Activities

Boeing Technology | Phantom Works

MCNA and SWIM

Boeing Technology | Phantom Works

- MCNA will eventually become an extension of the Common Data Transport (CDT)
 - Extends SWIM to the aircraft
- Initial focus on datalink transition
 - Timelines for avionics upgrades
 - Coordination with ground infrastructure and procedures
- Early implementations of SWIM mobility may employ gateways/brokers on the aircraft and the ground
 - Store and distribute static SWIM information
 - Provide common information and communication interface to new applications on the aircraft
- As MCNA capabilities expand, certain aspects of SWIM may be extended directly to the aircraft
 - Real time collection and distribution of dynamic information

MCNA Relationship with CDT, CIM and SWIM

Boeing Technology | Phantom Works

MCNA Context

MCNA Functional Architecture

Boeing Technology | Phantom Works

MCNA SoSE Relational Database

Boeing Technology | Phantom Works

Notional MCNA Transition Plan

Boeing Technology | Phantom Works

Ongoing Usage of the Relational Database

Boeing Technology | Phantom Works

- The initial rendering of this MCNA database will be most useful to demonstrate general trends.
 - Fidelity of the inputs will be too low after the first cut to draw many specific conclusion
- The true value of the database will be as a tool to support ongoing MCNA R&D
 - Define which services are required by envisioned scenarios
 - Define which services will be supported by planned systems
 - Define what requirements new systems should support
 - Determine impacts of delays in system deployment schedules
 - Conduct cost/benefit optimization of deployment sequences
 - Determine "need by" dates of system and avionics deployments to meet anticipated operations deployment schedules
 - Evaluate the viability and timing of new operational concepts

SWIM Node Reference Model

Boeing Technology | Phantom Works

GCNSS Phase II

SWIM Element

Applications Element

S³ – SWIM Shared Services

NA – Native Application

LA – Legacy Application

Ad – Adapter

MCNA/SWIM Nodes – Implementation Options

Boeing Technology | Phantom Works

MCNA Deliverables & Status

Boeing Technology | Phantom Works

CDRL	Name	Primary Focus	Approx. Pages	Initial	Final
A040	MCNA Architecture Report	Avaliant	100	3/10/2005	5/27/2005
A041	Technology Roadmap	ITT/ Honeywell	25	NA	6/10/2005
A042	Transition & Interoperability Plan	Avaliant	50	4/1/2005	6/10/2005
A043	Simulation, Emulation, and Demonstration Plan	ITT	50	3/10/2005	5/27/2005
A044	MCNA Investment Analysis	Boeing	30	10/29/2004 (Plan)	6/15/2005
A045	MCNA Final Report	Avaliant	25	6/30/2005	7/15/2005
A046	MCNA Requirement Report	Avaliant	75	12/15/2004	5/20/2005
A047	Certification Plan	Honeywell	40	NA	6/10/2005

MCNA Summary

Boeing Technology | Phantom Works

- Mobile Communications Network Architecture (MCNA) views the aircraft as both an important consumer and producer of information
- A network-based communications architecture can enhance the benefits of SWIM and Network Centric Operations in the NAS
- The MCNA encompasses both existing air-ground communications as well future data communications links and systems
- Through co-funding from NASA GRC and the FAA, the Boeing-led team is developing the plan for future MCNA investments

Questions

Boeing Technology | Phantom Works

Phantom

Backup Slides

MCNA/SWIM Nodes – Initial Transition

Boeing Technology | Phantom Works

GCNSS Phase II

Examples:

Broadcast Services – SWIM enabled ground application aggregates data and generates broadcast stream over legacy links such as UAT, 1090ES or VDL-B

MDCRS – Weather measurements and enhanced weather measurements are sent via ACARS to a SWIM enabled application that publishes the data into SWIM subscription by multiple users

OOOI – Aircraft state information is sent via ACARS to a SWIM enabled adapter that publishes the data into SWIM

i Airplane Air - Ground Terrestrial
Common
Data
Transport

S³

Boeing Technology | Phantom Works

Airplane

- IP, ATN or ACARS connection from terrestrial CDT to aircraft
- Legacy airplane apps require a SWIM enabled adapter
- New apps can be developed natively SWIM enabled

MCNA/SWIM Nodes – Transition (continued)

Boeing Technology | Phantom Works

GCNSS Phase II

Example

- On-board SWIM application communicate via SWIM-based messaging to ground SWIM applications
- Only AOA available for A-G
- Message gateway (GW) on aircraft converts SWIM messages to ACARS message (using plain text feature)
- Message passed through ACARS network to terrestrial message gateway
- SWIM message extracted from ACARS message and forwarded into SWIM
- Response message follows the inverse path

Airplane

Air - Ground

S³

Common

Data

Transport

MCNA/SWIM Nodes – Vision State

Boeing Technology | Phantom Works

GCNSS Phase II

Terrestrial Common

Data

- IP connection from terrestrial CDT to aircraft
- IP A-G is an extension of CDT
- Legacy airplane apps require a SWIM enabled adapter
- New apps can be developed natively SWIM enabled
- On-board SWIM broker provides additional capabilities to minimize unnecessary usage of A-G resources
 - Information caching
 - Local registry of SWIM service available on the aircraft
 - Message router

